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NASA Applied Sciences and Capacity
Building

National and international activities to
engage and train users applying NASA
Earth Science satellites and modeling data
in their decision making activities

NASA Satellite Images Will Help Farmers
Conserve Water
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NASA Applied Science : Capacity Building Program

Applied Remote SEnsing Training, ARSET
(GSFC)

On-line and hands on basic/advanced
trainings tailored to end-uses organizations

DEVELOP (LaRC national office)
Dual student/local government capacity
building using collaborative projects

SERVIR Coordination Office (MSFC)
Building international capacity with hubs in
-East Africa
-Hindu Kush - Himalaya
-Mesoamerica

Gulf of Mexico Initiative, GOMI (SSC
Building Gulf region’s capacity for local
environmental management




NASA Earth Science
Applied Sciences Program

Applications to Decision Making: Thematic Areas
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Applied Remote Sensing Training (ARSET)

GOAL:

Increase utilization of NASA

observational and model
data for decision-support

NASA
Data

Centers

Objectives:

on technical workshops

the public and private sectors

 Provide end-user communities and
institutions with professional hands-

« Build long term partnerships with end-
user communities and institutions in
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ARSET Trainings by Societal Benefit Area
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Satellite Remote Sensing of Air
Quality




Motivation — tiny but Potent

Eftects of Atmospheric Aerosols
A
.::Q} REACTIONS
Indirect effect £ v {Secondary PM)
on climat

Dhrect effect

: Heterogeneous
on climate -
. ) reactions

- -
- L
- - -
N -
&

L Aeroseld

=
L]
L] .
- -
, - L]
- =
v " S -

Acid rain

Health
effect

Visibality
reduction




Pollution and Breathing

News Focus

Particle air pollution clearly causes substantial deaths and illness, but what makes fine
particles so toxic—the size, the chemical compound, or both?

Mounting Evidence Indictsii
Fine-Particle Pollution v

Industrial Air Pollution: Possible Effect on Lung Cancer

Abstract. Higher lung cancer mortality rates occurred in males living in certain
heavily industrialized areas of Los Angeles County, California. These areas were
characrerized by elevared concentrations of benzolalpyrene and other polvnuclear
aromatic hvdrocarbons of primarily industeial origin in the soil and air.

Industrial poliutiomn

At risk. Studies with elderly volunteers have shown
that slight changes in outdoor partide levels can

a




Pollution and Health

Air Pollution—Related lllness
Effects of Particles

Aurvdiré Mel

orldwide epidemiological studies
show a consistent increase in car-
diac and respiratory morbidity
and mortality from sure to partic
. PM is a key mgredient

of polluted air and is

estimated to kill
cgif more than 500,000
eople each year

Dangerous dirt. (Left) Electron micrograph of
a fine mode particle collected by an impactor
from air outside an engineering laboratory at
the University of California, Los Angeles. A halo
surrounds residues of what are probably inor-
ganic salts and polar organic compounds dis-
solved in the original aqueous droplet. Sootlike
particles are ako present. (Right) Aggregates of
ultrafine particles collected on the last stage of
an eight-stage impactor. These are soot parti-
cles emitted from diesel engine sources such as
buses. More volatile particles may have evapo-
rated in the electron micoscope.




Pollution Suppresses Rain

Suppression of Rain and Snow
by Urban and Industrial Air

Pollution
Daniel Rosenfeld

Direct evidence demonstrates that urban and industrial air pollution can com-
pletely shut off precipitation from clouds that have temperatures at their tops
of about —10°C over large areas. Satellite data reveal plumes of reduced cloud
particle size and suppressed precipitation originating from major urban areas
and from industrial facilities such as power plants. Measurements obtained by
the Tropical Rainfall Measuring Mission satellite reveal that both cloud droplet
coalescence and ice precipitation formation are inhibited in polluted clouds.

Pollution reduces size of
cloud droplets

Shuts off rain processes



Pollution affects rice harvest

Air pollution and climate change both reduce Indian
rice harvests

‘Walfgang Cramer®
Deprrtmant of Glabs! Changs and Maturs! Spstems, Potsdam instituts for Chmate Impact R
D421 2 Patedam, Garmany

n ever-charging mix of anthro-
pogenic pol lotants alvers the
chermical and physcal propertes
of the atmosphere and thereby
catses pobentially negative impacts on
human scciety. To establish a robus
catss-and-sffect chain, all the way from
a particular kind of emission to its eco-
nomic andfor social impacts, remains a
transdsciplinary toor de farce with several
risks of failure along the wa. The fisst
majar link alorg mich a chain, that be-
teeen increased aerceol loads (“atme-
spheric broen clouds™ or ABC) ower the
Indian subcontnent, globally increasing
greenhouse gas ({GHOG) concentrations,
and regional charges in teraperatare, rain-
fall, and surface-near radiation, requires
corsideration of chemical and phiysical

Diespite rermaining open questions. the
bemic mechanisms linking regional climatic
condtions in South Ada to ABC are

kncam from a combination of measure-
ment camipaigns and model simulations
(7. First, the radiation budget s strorghy
affected by the presence of haze (Fig 1),
which reduces direct radiation at the sir.
face (land or ccean, approximately — 10
to — 15 W m~%, during the 19505} and
warmes the woposphere by approximately
the mime amount of energy. On average,
! . . the net solar forcing at the top of the at-
Pollution reduces sunlight andl rainfall ocephece changes b <1 W %,
i much higher salues may coour betwesn
January and May. Particularly durirg this

11 diopin yields RRAD i S




Global Air Pollution Crossroads
over the Mediterranean

J. Lelieveld,'* H. Berresheim,” S. Borrmann,'? P. ). Crutzen,'*
F. ). Dentener,® H. Fischer,! ). Feichter,® P. ). Flatau,*’ ). Heland,®
R. Helzinger,' R. Korrmann,! M. G. Lawrence,’ Z. Levin,®
K. M. Markowicz,*1? N. Mihalopoulos,' A. Minikin,®
V. Ramanathan,* M. de Reus,’ G. ). Roelofs,'? H. A. Scheeren, 2
J. Sciare,’® H. Schlager,® M. Schultz,® P. Siegmund,™ B. Steil,’
E. G. Stephanou,'! P. Stier,® M. Traub,’ C. Warneke, s
J. Williams,! H. Ziereis®

The Mediterranean Intensive Cxidant Study, performed in the summer of 2001,
uncovered air pollution layers from the surface to an altitude of 15 kilometers.
In the boundary layer, air pollution standards are exceeded throughout the
region, caused by West and East European pellution from the north. Aerosol
particles alse reduce soclar radiation penetration to the surface, which can
suppress precipitation. In the middle treposphere, Asian and to a lesser extent
Merth American pollution is transperted from the west. Additional Asian pol-

lutien frem the east, transported from the monscon in the upper troposphere, 8 ¥ /
crosses the Mediterranean tropopause, which pollutes the lower stratosphere ' ; (
at middle latitudes. ' X

Intercontinental




Thus Monitoring...

From Space

From Surface




Why Satellite ?




Global Status of PM2.5 Monitoring

I Many countries do not have PM2.5 mass measurements

- Y —— round
w Spatial distribution of air pollution from existing ground ensor
network does not support high population density twork
' e—— A - e—
| | wSurface measurements are not cost effective |
. x , .
A"I’”a'.i & How about using remote sensing satellites? |

2400 out of 3100 countles in the US (31% of total

population) have no PM momtormg |n the county

Brauer M, Ammann M, Burnett R et al.

GBD 2010 Outdoor Air Pollution Expert Group
2011 Submitted —under review
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Biomass
Burning

Aerosol Optical Thickness MODIS AQUA

(a) W 1oed mean 550 nm AOD DJF

(b) Merged mean 550 nm AOD MAM
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Several satellites provide state-of-art aerosol

measurements over global region on daily

basis



Annual Mean PM2.5 from Satellite
Observations

van Donkelaar et al., 2006, 2009 ¥
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National Ael and Space Ad

The Afternoon Constellation
“A-Train”

PARASOL CALIPSO Cloudsat

o
2111

....................

Number of Earth Observing Satellites Provides
Measurements of Atmosphere, Land and Ocean



Principal Satellites in Air Quality Remote Sensing

1KmMm
- CALIPSO
(CALIOP)

2300 Km
MODIS
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OMI




What is our interest and what we
get from satellite?

To of the Atmosphere

Aerosol Optical
Particle size
Depth Composition
Water uptake
Vertical Distribution

10 km?
Vertical
Column
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Empirical Ways to Estimate PM2.5

PM, (H-gm ‘3)
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AOT-PM2.5 Relationship

-120 —112 —-104 —96 —88 —80

<0.0 0.0-0.25 0.25-0.50 0.50-0.75 0.75-1.00

Linear Correlation Coefficient

Gupta, 2008



PM2.5 Estimation: Popular Methods

Difficulty Level
3 ‘Y=mX +c \/
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and Empirical Methods, Data Assimilation etc. are under utilized
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Application of
Satellite

Observations

during bushfires
in Sydney,
Australia
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PM2.5 (ugm™)

Air Quality Trends: Birmingham, AL
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A decreasing trend in
annual PM2.5 was noted
with the almost 22%
reduction in PM2.5 mass
concentration was observed
in 2006 compared to 2002.
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Another view of air quality over global
regions

Gupta, 2008

Satellite derived air quality conditions are poor in almost all of
the global mega cities with population more than 10 million



(courtesy of Dave Winker, P.I. CALIPSO)

Saharan Dust Transport
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Aerosols - Particulate Matter
(PM10, PM2.5)
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Trace Gases




Ozone below 10 km from a NASA satellite

June-Aug
2006

Sept-Nov
2006




Pollution Gas - MOPITT

£y O

CARBON MONOXIDE

October 30, 2000
Carbon Monoxide Concentration (parts per billion)

S0 220 390 =

Courtesy — P.K. Bhartia



NO2 Trends over United States

WWW.Nasa.
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NO2 Trends over New York City

Nitrogen Dicwkide Level

HIGH




NO2 Trends over Atlanta




courtesy: Lok Lamsal
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What you get to learn at a
typical ARSET training?

Or

How ARSET can help?

39



Fundamental of Satellite Remote
Sensing

® CCRS/CCT

Remote Sensing
Process

Ascending Orbit:

The satellite is moving
South to North when
that portion of the orbit
track crosses the

equator.

Observation Geometry Orbits



Earth Observing Systems
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Aerosol
S over

Aerosol
S over

Data
collection




Satellite Algorithms

Radiance -to- Aerosol Products

RGB Aerosol Optical Depth
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Data Formats, Reading, Understanding & Visualization

o~ oo

X! (1km)(Orthographic)_Lat(34.075,55.673)_Lon(-143.075,-107.303)

File Window Color Help

L

SIS list
1: { 203 x 135 ) Longitude
2: (203 x 135 ) Latitude
33 ( 203 x 135 ) Scan_Start_Time
4: ( 203 x 135 ) Solar_Zenith
5: ( 203 x 135 ) Solar_Azimuth
6: ( 203 x 135 ) Sensor_Zenith
73 (203 x 135 ) Sensor_Azinuth
8: ( 203 x 135 ) Cloud_Mask_0A
9ra(0 1203 x 130 ) Scattermg fAngle
): (2 al
11 { 203 x 135 ) Image Optical _Depth_Land_ Flnd Ocean
12: { 203 x 135 ) Optical_Depth_Ratio_Small_Land_And_Ocean
| =] =
SIS selection
“10: ( 203 x 135 ) Optical_Depth_Land_And_Ocean I Show attributes

Multidimensional SDS: layer selection (layer index, or * for all)

|[Helght || Width I
Width -
Height W F

(MODIS) (Orthographic) Lat(34,217,55,629) [Rn(-142,939,-107,782)
Set map addings.,..

y = alx-b) - |

L Automatic mask detection |

Show SDS as values I

Show SDS as a plot |

AERONET (Dptical thickness) |

(MODIS) ("Day"): 2008: 7:18 (200) 15h30
++s. DUMP DATA ON DISK ...

Show SDS as an image

Display a MODIS reprojected

Show one layer

eSO

Eila
Slice and plot specific latitude-I
latitude arrays from larger multidimensional variables.

Combine two arrays in one plot by differencing, summing or averaging.

Plot lon-lat data on a global or regional map (using any of over 75 map projections) or
make a zonal average lineplot.

Overlay continent outlines or masks on lon-lat plots.

Use any ACT, CPT, GGR, or PAL color table for scale colorbar.

Save plots to disk GIF, JPEG, PNG or TIFF bitmap images or as PDF or PostScript
graphics files.

Export lon-lat map plots in KMZ format.

Export animations as AVl or MOV video or as a collection of invididual frame images.
Explore remote THREDDS and OpenDAP catalogs and open datasets served there.

115,

el it deve i callion ainde

rtical, or time-

The current version of Panoply is 3.2.1, released 2013-09-30.

Panoply requires that your computer have a Java SE 6 runtime environment, or better, installed.
To be plotted by Panoply, dataset variables must be tagged with metadata information using a convention such as CF.

Show

User defined ...




Vertical Profiles of Aerosols
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Particulate Matter Air Quality from Space

- From Satellite to PM, ; to Air Quallty Index
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Dust & Smoke Monitoring
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Model-Satellite Inter-comparison

CMAQ Model NO,




Long Range Transport
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"Dust from Mongolian Deserts reaches the US

International Date Line
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Air Quality Trends

AERONET over CCNY




Data User Guide

Bryan N. Duncan, Ana I. Prados, Lok N. Lamsal, Yang Liu, David G.
Streets, Pawan Gupta, Ernest Hilsenrath, Ralph A. Kahn, J. Eric Nielsen,
Andreas J. Beyersdorf, Sharon P. Burton, Arlene M. Fiore, Jack Fishman,
Daven K. Henze, Chris A. Hostetler, Nickolay A. Krotkov, Pius Lee, Meiyun
Lin, Steven Pawson, Gabriele Pfister, Kenneth E. Pickering, R. Bradley
Pierce, Yasuko Yoshida, Luke D. Ziemba, Satellite data of atmospheric
pollution for U.S. air quality applications: Examples of
applications, summary of data end-user resources, answers to
FAQs, and common mistakes to avoid, Atmospheric Environment,
Volume 94, September 2014, Pages 647-662, ISSN 1352-2310,
http://dx.doi.org/10.1016/j.atmosenv.2014.05.061.

(http://www.sciencedirect.com/science/article/pii/S1352231014004270)

An ARSET/AQAST Collaboration




